Matplotlib is hiring a Research Software Engineering Fellow! See discourse for details. Apply by January 3, 2020
这里显示了两种方法,一种使用短调用 Figure.align_ylabels
第二种是手动对齐标签的方法。
import numpy as np
import matplotlib.pyplot as plt
def make_plot(axs):
box = dict(facecolor='yellow', pad=5, alpha=0.2)
# Fixing random state for reproducibility
np.random.seed(19680801)
ax1 = axs[0, 0]
ax1.plot(2000*np.random.rand(10))
ax1.set_title('ylabels not aligned')
ax1.set_ylabel('misaligned 1', bbox=box)
ax1.set_ylim(0, 2000)
ax3 = axs[1, 0]
ax3.set_ylabel('misaligned 2', bbox=box)
ax3.plot(np.random.rand(10))
ax2 = axs[0, 1]
ax2.set_title('ylabels aligned')
ax2.plot(2000*np.random.rand(10))
ax2.set_ylabel('aligned 1', bbox=box)
ax2.set_ylim(0, 2000)
ax4 = axs[1, 1]
ax4.plot(np.random.rand(10))
ax4.set_ylabel('aligned 2', bbox=box)
# Plot 1:
fig, axs = plt.subplots(2, 2)
fig.subplots_adjust(left=0.2, wspace=0.6)
make_plot(axs)
# just align the last column of axes:
fig.align_ylabels(axs[:, 1])
plt.show()
参见
Figure.align_ylabels
and Figure.align_labels
for a direct method
of doing the same thing.
Also 对齐标签
或者我们可以使用 set_label_coords
Y轴对象的方法。注:这要求我们知道一个硬编码的良好偏移值。
fig, axs = plt.subplots(2, 2)
fig.subplots_adjust(left=0.2, wspace=0.6)
make_plot(axs)
labelx = -0.3 # axes coords
for j in range(2):
axs[j, 1].yaxis.set_label_coords(labelx, 0.5)
plt.show()