Matplotlib is hiring a Research Software Engineering Fellow! See discourse for details. Apply by January 3, 2020
import math
import numpy as np
import matplotlib.units as units
import matplotlib.ticker as ticker
from matplotlib.cbook import iterable
class ProxyDelegate(object):
def __init__(self, fn_name, proxy_type):
self.proxy_type = proxy_type
self.fn_name = fn_name
def __get__(self, obj, objtype=None):
return self.proxy_type(self.fn_name, obj)
class TaggedValueMeta(type):
def __init__(self, name, bases, dict):
for fn_name in self._proxies:
try:
dummy = getattr(self, fn_name)
except AttributeError:
setattr(self, fn_name,
ProxyDelegate(fn_name, self._proxies[fn_name]))
class PassThroughProxy(object):
def __init__(self, fn_name, obj):
self.fn_name = fn_name
self.target = obj.proxy_target
def __call__(self, *args):
fn = getattr(self.target, self.fn_name)
ret = fn(*args)
return ret
class ConvertArgsProxy(PassThroughProxy):
def __init__(self, fn_name, obj):
PassThroughProxy.__init__(self, fn_name, obj)
self.unit = obj.unit
def __call__(self, *args):
converted_args = []
for a in args:
try:
converted_args.append(a.convert_to(self.unit))
except AttributeError:
converted_args.append(TaggedValue(a, self.unit))
converted_args = tuple([c.get_value() for c in converted_args])
return PassThroughProxy.__call__(self, *converted_args)
class ConvertReturnProxy(PassThroughProxy):
def __init__(self, fn_name, obj):
PassThroughProxy.__init__(self, fn_name, obj)
self.unit = obj.unit
def __call__(self, *args):
ret = PassThroughProxy.__call__(self, *args)
return (NotImplemented if ret is NotImplemented
else TaggedValue(ret, self.unit))
class ConvertAllProxy(PassThroughProxy):
def __init__(self, fn_name, obj):
PassThroughProxy.__init__(self, fn_name, obj)
self.unit = obj.unit
def __call__(self, *args):
converted_args = []
arg_units = [self.unit]
for a in args:
if hasattr(a, 'get_unit') and not hasattr(a, 'convert_to'):
# if this arg has a unit type but no conversion ability,
# this operation is prohibited
return NotImplemented
if hasattr(a, 'convert_to'):
try:
a = a.convert_to(self.unit)
except:
pass
arg_units.append(a.get_unit())
converted_args.append(a.get_value())
else:
converted_args.append(a)
if hasattr(a, 'get_unit'):
arg_units.append(a.get_unit())
else:
arg_units.append(None)
converted_args = tuple(converted_args)
ret = PassThroughProxy.__call__(self, *converted_args)
if ret is NotImplemented:
return NotImplemented
ret_unit = unit_resolver(self.fn_name, arg_units)
if ret_unit is NotImplemented:
return NotImplemented
return TaggedValue(ret, ret_unit)
class TaggedValue(metaclass=TaggedValueMeta):
_proxies = {'__add__': ConvertAllProxy,
'__sub__': ConvertAllProxy,
'__mul__': ConvertAllProxy,
'__rmul__': ConvertAllProxy,
'__cmp__': ConvertAllProxy,
'__lt__': ConvertAllProxy,
'__gt__': ConvertAllProxy,
'__len__': PassThroughProxy}
def __new__(cls, value, unit):
# generate a new subclass for value
value_class = type(value)
try:
subcls = type('TaggedValue_of_%s' % (value_class.__name__),
tuple([cls, value_class]),
{})
if subcls not in units.registry:
units.registry[subcls] = basicConverter
return object.__new__(subcls)
except TypeError:
if cls not in units.registry:
units.registry[cls] = basicConverter
return object.__new__(cls)
def __init__(self, value, unit):
self.value = value
self.unit = unit
self.proxy_target = self.value
def __getattribute__(self, name):
if name.startswith('__'):
return object.__getattribute__(self, name)
variable = object.__getattribute__(self, 'value')
if hasattr(variable, name) and name not in self.__class__.__dict__:
return getattr(variable, name)
return object.__getattribute__(self, name)
def __array__(self, dtype=object):
return np.asarray(self.value).astype(dtype)
def __array_wrap__(self, array, context):
return TaggedValue(array, self.unit)
def __repr__(self):
return 'TaggedValue({!r}, {!r})'.format(self.value, self.unit)
def __str__(self):
return str(self.value) + ' in ' + str(self.unit)
def __len__(self):
return len(self.value)
def __iter__(self):
# Return a generator expression rather than use `yield`, so that
# TypeError is raised by iter(self) if appropriate when checking for
# iterability.
return (TaggedValue(inner, self.unit) for inner in self.value)
def get_compressed_copy(self, mask):
new_value = np.ma.masked_array(self.value, mask=mask).compressed()
return TaggedValue(new_value, self.unit)
def convert_to(self, unit):
if unit == self.unit or not unit:
return self
new_value = self.unit.convert_value_to(self.value, unit)
return TaggedValue(new_value, unit)
def get_value(self):
return self.value
def get_unit(self):
return self.unit
class BasicUnit(object):
def __init__(self, name, fullname=None):
self.name = name
if fullname is None:
fullname = name
self.fullname = fullname
self.conversions = dict()
def __repr__(self):
return 'BasicUnit(%s)' % self.name
def __str__(self):
return self.fullname
def __call__(self, value):
return TaggedValue(value, self)
def __mul__(self, rhs):
value = rhs
unit = self
if hasattr(rhs, 'get_unit'):
value = rhs.get_value()
unit = rhs.get_unit()
unit = unit_resolver('__mul__', (self, unit))
if unit is NotImplemented:
return NotImplemented
return TaggedValue(value, unit)
def __rmul__(self, lhs):
return self*lhs
def __array_wrap__(self, array, context):
return TaggedValue(array, self)
def __array__(self, t=None, context=None):
ret = np.array([1])
if t is not None:
return ret.astype(t)
else:
return ret
def add_conversion_factor(self, unit, factor):
def convert(x):
return x*factor
self.conversions[unit] = convert
def add_conversion_fn(self, unit, fn):
self.conversions[unit] = fn
def get_conversion_fn(self, unit):
return self.conversions[unit]
def convert_value_to(self, value, unit):
conversion_fn = self.conversions[unit]
ret = conversion_fn(value)
return ret
def get_unit(self):
return self
class UnitResolver(object):
def addition_rule(self, units):
for unit_1, unit_2 in zip(units[:-1], units[1:]):
if unit_1 != unit_2:
return NotImplemented
return units[0]
def multiplication_rule(self, units):
non_null = [u for u in units if u]
if len(non_null) > 1:
return NotImplemented
return non_null[0]
op_dict = {
'__mul__': multiplication_rule,
'__rmul__': multiplication_rule,
'__add__': addition_rule,
'__radd__': addition_rule,
'__sub__': addition_rule,
'__rsub__': addition_rule}
def __call__(self, operation, units):
if operation not in self.op_dict:
return NotImplemented
return self.op_dict[operation](self, units)
unit_resolver = UnitResolver()
cm = BasicUnit('cm', 'centimeters')
inch = BasicUnit('inch', 'inches')
inch.add_conversion_factor(cm, 2.54)
cm.add_conversion_factor(inch, 1/2.54)
radians = BasicUnit('rad', 'radians')
degrees = BasicUnit('deg', 'degrees')
radians.add_conversion_factor(degrees, 180.0/np.pi)
degrees.add_conversion_factor(radians, np.pi/180.0)
secs = BasicUnit('s', 'seconds')
hertz = BasicUnit('Hz', 'Hertz')
minutes = BasicUnit('min', 'minutes')
secs.add_conversion_fn(hertz, lambda x: 1./x)
secs.add_conversion_factor(minutes, 1/60.0)
# radians formatting
def rad_fn(x, pos=None):
if x >= 0:
n = int((x / np.pi) * 2.0 + 0.25)
else:
n = int((x / np.pi) * 2.0 - 0.25)
if n == 0:
return '0'
elif n == 1:
return r'$\pi/2$'
elif n == 2:
return r'$\pi$'
elif n == -1:
return r'$-\pi/2$'
elif n == -2:
return r'$-\pi$'
elif n % 2 == 0:
return r'$%s\pi$' % (n//2,)
else:
return r'$%s\pi/2$' % (n,)
class BasicUnitConverter(units.ConversionInterface):
@staticmethod
def axisinfo(unit, axis):
'return AxisInfo instance for x and unit'
if unit == radians:
return units.AxisInfo(
majloc=ticker.MultipleLocator(base=np.pi/2),
majfmt=ticker.FuncFormatter(rad_fn),
label=unit.fullname,
)
elif unit == degrees:
return units.AxisInfo(
majloc=ticker.AutoLocator(),
majfmt=ticker.FormatStrFormatter(r'$%i^\circ$'),
label=unit.fullname,
)
elif unit is not None:
if hasattr(unit, 'fullname'):
return units.AxisInfo(label=unit.fullname)
elif hasattr(unit, 'unit'):
return units.AxisInfo(label=unit.unit.fullname)
return None
@staticmethod
def convert(val, unit, axis):
if units.ConversionInterface.is_numlike(val):
return val
if iterable(val):
return [thisval.convert_to(unit).get_value() for thisval in val]
else:
return val.convert_to(unit).get_value()
@staticmethod
def default_units(x, axis):
'return the default unit for x or None'
if iterable(x):
for thisx in x:
return thisx.unit
return x.unit
def cos(x):
if iterable(x):
return [math.cos(val.convert_to(radians).get_value()) for val in x]
else:
return math.cos(x.convert_to(radians).get_value())
basicConverter = BasicUnitConverter()
units.registry[BasicUnit] = basicConverter
units.registry[TaggedValue] = basicConverter