Notiz
Klicken Sie hier , um den vollständigen Beispielcode herunterzuladen
Anpassung des Violinplots #
Dieses Beispiel zeigt, wie Sie Violin-Plots vollständig anpassen können. Das erste Diagramm zeigt den Standardstil, indem nur die Daten bereitgestellt werden. Das zweite Diagramm schränkt zunächst ein, was Matplotlib mit zusätzlichen Schlüsselwortargumenten zeichnet. Darauf wird dann eine vereinfachte Darstellung eines Boxplots gezeichnet. Schließlich werden die Stile der Geigenkünstler modifiziert.
Für weitere Informationen zu Geigenplots haben die scikit-learn-Dokumente einen großartigen Abschnitt: https://scikit-learn.org/stable/modules/density.html
import matplotlib.pyplot as plt
import numpy as np
def adjacent_values(vals, q1, q3):
upper_adjacent_value = q3 + (q3 - q1) * 1.5
upper_adjacent_value = np.clip(upper_adjacent_value, q3, vals[-1])
lower_adjacent_value = q1 - (q3 - q1) * 1.5
lower_adjacent_value = np.clip(lower_adjacent_value, vals[0], q1)
return lower_adjacent_value, upper_adjacent_value
def set_axis_style(ax, labels):
ax.xaxis.set_tick_params(direction='out')
ax.xaxis.set_ticks_position('bottom')
ax.set_xticks(np.arange(1, len(labels) + 1), labels=labels)
ax.set_xlim(0.25, len(labels) + 0.75)
ax.set_xlabel('Sample name')
# create test data
np.random.seed(19680801)
data = [sorted(np.random.normal(0, std, 100)) for std in range(1, 5)]
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(9, 4), sharey=True)
ax1.set_title('Default violin plot')
ax1.set_ylabel('Observed values')
ax1.violinplot(data)
ax2.set_title('Customized violin plot')
parts = ax2.violinplot(
data, showmeans=False, showmedians=False,
showextrema=False)
for pc in parts['bodies']:
pc.set_facecolor('#D43F3A')
pc.set_edgecolor('black')
pc.set_alpha(1)
quartile1, medians, quartile3 = np.percentile(data, [25, 50, 75], axis=1)
whiskers = np.array([
adjacent_values(sorted_array, q1, q3)
for sorted_array, q1, q3 in zip(data, quartile1, quartile3)])
whiskers_min, whiskers_max = whiskers[:, 0], whiskers[:, 1]
inds = np.arange(1, len(medians) + 1)
ax2.scatter(inds, medians, marker='o', color='white', s=30, zorder=3)
ax2.vlines(inds, quartile1, quartile3, color='k', linestyle='-', lw=5)
ax2.vlines(inds, whiskers_min, whiskers_max, color='k', linestyle='-', lw=1)
# set style for the axes
labels = ['A', 'B', 'C', 'D']
for ax in [ax1, ax2]:
set_axis_style(ax, labels)
plt.subplots_adjust(bottom=0.15, wspace=0.05)
plt.show()
Verweise
In diesem Beispiel wird die Verwendung der folgenden Funktionen, Methoden, Klassen und Module gezeigt: