Notiz
Klicken Sie hier , um den vollständigen Beispielcode herunterzuladen
pcolormesh #
axes.Axes.pcolormesh
können Sie 2D-Plots im Bildstil erstellen. Beachten Sie, dass es schneller ist als das ähnliche pcolor
.
import matplotlib.pyplot as plt
from matplotlib.colors import BoundaryNorm
from matplotlib.ticker import MaxNLocator
import numpy as np
Einfaches pcolormesh #
Normalerweise spezifizieren wir ein pcolormesh, indem wir die Kante von Vierecken und den Wert des Vierecks definieren. Beachten Sie, dass hier x und y jeweils ein zusätzliches Element als Z in der jeweiligen Dimension haben.
np.random.seed(19680801)
Z = np.random.rand(6, 10)
x = np.arange(-0.5, 10, 1) # len = 11
y = np.arange(4.5, 11, 1) # len = 7
fig, ax = plt.subplots()
ax.pcolormesh(x, y, Z)
<matplotlib.collections.QuadMesh object at 0x7f2d00aaeef0>
Nicht-geradliniges pcolormesh #
Beachten Sie, dass wir auch Matrizen für X und Y angeben können und nicht geradlinige Vierecke haben.
<matplotlib.collections.QuadMesh object at 0x7f2d00c610f0>
Zentrierte Koordinaten #
Häufig möchte ein Benutzer X und Y mit denselben Größen wie Z an
übergeben axes.Axes.pcolormesh
. Dies ist auch erlaubt, wenn shading='auto'
übergeben wird (Standardeinstellung durch rcParams["pcolor.shading"]
(default: 'auto'
)). Pre Matplotlib 3.3
shading='flat'
würde die letzte Spalte und Zeile von Z löschen ; Während dies aus Gründen der Abwärtskompatibilität weiterhin zulässig ist, wird eine DeprecationWarning ausgelöst. Wenn Sie das wirklich wollen, löschen Sie einfach die letzte Zeile und Spalte von Z manuell:
x = np.arange(10) # len = 10
y = np.arange(6) # len = 6
X, Y = np.meshgrid(x, y)
fig, axs = plt.subplots(2, 1, sharex=True, sharey=True)
axs[0].pcolormesh(X, Y, Z, vmin=np.min(Z), vmax=np.max(Z), shading='auto')
axs[0].set_title("shading='auto' = 'nearest'")
axs[1].pcolormesh(X, Y, Z[:-1, :-1], vmin=np.min(Z), vmax=np.max(Z),
shading='flat')
axs[1].set_title("shading='flat'")
Text(0.5, 1.0, "shading='flat'")
Erstellen von Levels mit Normen #
Zeigt, wie Normalisierungs- und Colormap-Instanzen kombiniert werden, um "Ebenen" in zu zeichnen axes.Axes.pcolor
, axes.Axes.pcolormesh
und axes.Axes.imshow
Plots auf ähnliche Weise wie das Schlüsselwort-Argument "levels" für contour/contourf einzugeben.
# make these smaller to increase the resolution
dx, dy = 0.05, 0.05
# generate 2 2d grids for the x & y bounds
y, x = np.mgrid[slice(1, 5 + dy, dy),
slice(1, 5 + dx, dx)]
z = np.sin(x)**10 + np.cos(10 + y*x) * np.cos(x)
# x and y are bounds, so z should be the value *inside* those bounds.
# Therefore, remove the last value from the z array.
z = z[:-1, :-1]
levels = MaxNLocator(nbins=15).tick_values(z.min(), z.max())
# pick the desired colormap, sensible levels, and define a normalization
# instance which takes data values and translates those into levels.
cmap = plt.colormaps['PiYG']
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
fig, (ax0, ax1) = plt.subplots(nrows=2)
im = ax0.pcolormesh(x, y, z, cmap=cmap, norm=norm)
fig.colorbar(im, ax=ax0)
ax0.set_title('pcolormesh with levels')
# contours are *point* based plots, so convert our bound into point
# centers
cf = ax1.contourf(x[:-1, :-1] + dx/2.,
y[:-1, :-1] + dy/2., z, levels=levels,
cmap=cmap)
fig.colorbar(cf, ax=ax1)
ax1.set_title('contourf with levels')
# adjust spacing between subplots so `ax1` title and `ax0` tick labels
# don't overlap
fig.tight_layout()
plt.show()
Verweise
In diesem Beispiel wird die Verwendung der folgenden Funktionen, Methoden, Klassen und Module gezeigt:
Gesamtlaufzeit des Skripts: ( 0 Minuten 1.467 Sekunden)